Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Environ Monit Assess ; 195(8): 940, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37436672

ABSTRACT

Water bodies with the dye methylene blue pose serious environmental and health risks to humans. Therefore, the creation and investigation of affordable, potential adsorbents to remove methylene blue dye from water resources as a long-term fix is one focus of the scientific community. Food plants and other carbon-source serve as a hotspot for a wider range of application on different pollutants that impact the environment and living organisms. Here, we reviewed the use of treated and untreated biosorbents made from plant waste leaves for removing the dye methylene blue from aqueous media. After being modified, activated carbon made from various plant leaves improves adsorption performance. The range of activating chemicals, activation methods, and bio-sorbent material characterisation using FTIR analysis, Barunauer-Emmett-Teller (BET) surface area, scanning electron microscope (SEM-EDX), and SEM-EDX have all been covered in this review. It has been thoroughly described how the pH solution of the methylene blue dye compares to the pHPZC of the adsorbent surface. The presentation also includes a thorough analysis of the application of the isotherm model, kinetic model, and thermodynamic parameters. The selectivity of the adsorbent is the main focus of the adsorption kinetics and isotherm models. It has been studied how adsorption occurs, how surface area and pH affect it, and how biomass waste compares to other adsorbents. The use of biomass waste as adsorbents is both environmentally and economically advantageous, and it has been discovered to have exceptional color removal capabilities.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Humans , Methylene Blue/chemistry , Adsorption , Kinetics , Environmental Monitoring , Thermodynamics , Plant Leaves/chemistry , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
2.
Sci Rep ; 13(1): 7968, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37198391

ABSTRACT

Climatic condition is triggering human health emergencies and earth's surface changes. Anthropogenic activities, such as built-up expansion, transportation development, industrial works, and some extreme phases, are the main reason for climate change and global warming. Air pollutants are increased gradually due to anthropogenic activities and triggering the earth's health. Nitrogen Dioxide (NO2), Carbon Monoxide (CO), and Aerosol Optical Depth (AOD) are truthfully important for air quality measurement because those air pollutants are more harmful to the environment and human's health. Earth observational Sentinel-5P is applied for monitoring the air pollutant and chemical conditions in the atmosphere from 2018 to 2021. The cloud computing-based Google Earth Engine (GEE) platform is applied for monitoring those air pollutants and chemical components in the atmosphere. The NO2 variation indicates high during the time because of the anthropogenic activities. Carbon Monoxide (CO) is also located high between two 1-month different maps. The 2020 and 2021 results indicate AQI change is high where 2018 and 2019 indicates low AQI throughout the year. The Kolkata have seven AQI monitoring station where high nitrogen dioxide recorded 102 (2018), 48 (2019), 26 (2020) and 98 (2021), where Delhi AQI stations recorded 99 (2018), 49 (2019), 37 (2020), and 107 (2021). Delhi, Kolkata, Mumbai, Pune, and Chennai recorded huge fluctuations of air pollutants during the study periods, where ~ 50-60% NO2 was recorded as high in the recent time. The AOD was noticed high in Uttar Pradesh in 2020. These results indicate that air pollutant investigation is much necessary for future planning and management otherwise; our planet earth is mostly affected by the anthropogenic and climatic conditions where maybe life does not exist.

3.
Chemosphere ; 323: 138263, 2023 May.
Article in English | MEDLINE | ID: mdl-36858116

ABSTRACT

Green synthesis of nanomaterials has emerged as an ecofriendly sustainable technology for the removal of dyes in the last few decades. Especially, plant leaf extracts have been considered as inexpensive and effective materials for the synthesis of nanoparticles. In this study, zinc oxide nanoparticles (ZnO NPs) were prepared using leaves extract of Brassica oleracea var. botrytis (BO) by co-precipitation and applied for photocatalytic/antibacterial activity. The synthesized BO-ZnO NPs was characterized by different instrumental techniques. The UV-vis Spectrum of the synthesized material showed maximum absorbance at a wavelength of 311 nm, which confirmed the formation of BO-ZnO NPs. The XRD pattern of BO-ZnO NPs represents a hexagonal wurtzite structure and the average size of particles was about 52 nm. FT-IR spectrum analysis confirms the presence of hydroxyl, carbonyl, carboxylic, and phenol groups. SEM images exhibited a flower like morphology and EDX spectrum confirming the presence of the elements Zn and O. Photo-catalytic activity of BO-ZnO NPs was tested against thiazine dye (methylene blue-MB) degradation under direct sunlight irradiation. Around 80% of the MB dye got degraded at pH 8 under 75 min of sunlight irradiation. Further, the study examined that the antimicrobial and larvicidal activity of BO-ZnO NPs obtained through green synthesis. The antimicrobial study results showed that the BO-ZnO NPs formed zones against bacterial pathogens. The results showed the formation of an inhibition zone against B. subtills (16 mm), S.aureus (13 mm), K. pneumonia (13 mm), and E. coli (9 mm) respectively at a concentration of 100 µg/mL of BO-ZnO NPs. The larvicidal activity of the BO-ZnO NPs was tested against the fourth instar of Culex quinquefasciatus mosquito larvae The LC50 and LC90 values estimated through the larvicidal activity of BO-ZnO NPs were 76.03, 190.03 ppm respectively. Hence the above findings propose the synthesized BO-ZnO NPs by the ecofriendly method can be used for various environmental and antipathogenic applications.


Subject(s)
Anti-Infective Agents , Brassica , Metal Nanoparticles , Zinc Oxide , Animals , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Botrytis , Spectroscopy, Fourier Transform Infrared , Escherichia coli , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
4.
Environ Monit Assess ; 195(4): 461, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36905447

ABSTRACT

In the electrochemical degradation process, the elimination of organic pollutants could be enhanced using supporting electrolyte and applied voltage. After degradation of the target organic compound, some by-products are formed. Chlorinated by-products are the main products formed in the presence of sodium chloride. In the present study, an electrochemical oxidation process has been applied to diclofenac (DCF) using graphite as an anode and sodium chloride (NaCl) as a supporting electrolyte. Monitoring the removal of the by-products and elucidating them were provided using HPLC and LC-TOF/MS, respectively. A high removal% of 94% DCF was observed under the conditions: 0.5 g NaCl, 5 V, and 80 min of electrolysis, while the removal% of chemical oxygen demand (COD) was 88% under the same conditions, but 360 min of electrolysis was required. The pseudo-first-order rate constant values were quite varied based on the selected experimental conditions; the rate constants were between 0.0062 and 0.054 min-1, between 0.0024 and 0.0326 min-1 under the influence of applied voltage and sodium chloride, respectively. The maximum values of energy consumption were 0.93 and 0.55 Wh/mg using 0.1 g NaCl and 7 V, respectively. Some chlorinated by-products, C13H18Cl2NO5, C11H10Cl3NO4, and C13H13Cl5NO5, were selected and elucidated using LC-TOF/MS.


Subject(s)
Graphite , Water Pollutants, Chemical , Diclofenac , Sodium Chloride , Graphite/chemistry , Environmental Monitoring , Oxidation-Reduction , Electrodes , Electrolytes/chemistry , Water Pollutants, Chemical/chemistry
5.
Environ Sci Pollut Res Int ; 30(17): 50457-50470, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36795212

ABSTRACT

10,11-Dihydro-10-hydroxy carbamazepine has been degraded in deionized water and wastewater samples using an electrochemical process. The anode used in the treatment process was graphite-PVC. Different factors such as initial concentration, NaCl amount, type of matrix, applied voltage, role of H2O2, and pH solution were investigated in the treatment of 10,11-dihydro-10-hydroxy carbamazepine. From the outcome of the results, it was noticed that the chemical oxidation of the compound followed a pseudo-first-order reaction. The rate constants were ranged between 22 × 10-4 and 483 × 10-4 min-1. After electrochemical degradation of the compound, several by-products were raised, and they were analyzed using an accurate instrument, liquid chromatography-time of flight-mass spectrometry (LC-TOF/MS). In the present study, the treatment of the compound was followed by high energy consumption under 10 V and 0.5 g NaCl, reaching up to 0.65 Wh mg-1 after 50 min. The inhibition of E. coli bacteria after incubation of the treated 10,11-dihydro-10-hydroxy carbamazepine sample was investigated in terms of toxicity.


Subject(s)
Sodium Chloride , Water Pollutants, Chemical , Sodium Chloride/chemistry , Escherichia coli/metabolism , Hydrogen Peroxide/analysis , Carbamazepine/analysis , Wastewater , Oxidation-Reduction , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 317: 137914, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682637

ABSTRACT

Heavy metals (HMs) are a vital elements for investigating the pollutant level of sediments and water bodies. The Murray-Darling river basin area located in Australia is experiencing severe damage to increased crop productivity, loss of soil fertility, and pollution levels within the vicinity of the river system. This basin is the most effective primary production area in Australia where agricultural productivity is increased the gross domastic product in the entire mainland. In this study, HMs contaminations are examined for eight study sites selected for the Murray-Darling river basin where the inverse Distance Weighting interpolation method is used to identify the distribution of HMs. To pursue this, four different pollution indices namely the Geo-accumulation index (Igeo), Contamination factor (CF), Pollution load index (PLI), single-factor pollution index (SPLI), and the heavy metal pollution index (HPI) are computed. Following this, the Pearson correlation matrix is used to identify the relationships among the two HM parameters. The results indicate that the conductivity and N (%) are relatively high in respect to using Igeo and PLI indexes for study sites 4, 6, and 7 with 2.93, 3.20, and 1.38, respectively. The average HPI is 216.9071 that also indicates higher level pollution in the Murray-Darling river basin and the highest HPI value is noted in sample site 1 (353.5817). The study also shows that the levels of Co, P, Conductivity, Al, and Mn are mostly affected by HMs and that these indices indicate the maximum HM pollution level in the Murray-Darling river basin. Finally, the results show that the high HM contamination level appears to influence human health and local environmental conditions.


Subject(s)
Metals, Heavy , Soil , Humans , Environmental Monitoring/methods , Rivers , Metals, Heavy/analysis , Australia , Spatial Analysis , Risk Assessment , China , Geologic Sediments
7.
Toxics ; 10(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36287878

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) (concentration <µg/L) are globally acknowledged as hazardous emerging pollutants that pass via various routes in the environment and ultimately enter aquatic food chains. In this context, the article reviews the occurrence, transport, fate, and electrochemical removal of some selected NSAIDs (diclofenac (DIC), ketoprofen (KTP), ibuprofen (IBU), and naproxen (NPX)) using carbon-based anodes in the aquatic environment. However, no specific protocol has been developed to date, and various approaches have been adopted for the sampling and elimination processes of NSAIDs from wastewater samples. The mean concentration of selected NSAIDs from different countries varies considerably, ranging between 3992−27,061 µg/L (influent wastewater) and 1208−7943 µg/L (effluent wastewater). An assessment of NSAIDs removal efficiency across different treatment stages in various wastewater treatment plants (WWTPs) has been performed. Overall, NSAIDs removal efficiency in wastewater treatment plants has been reported to be around 4−89%, 8−100%, 16−100%, and 17−98% for DIC, KTP, NPX, and IBU, respectively. A microbiological reactor (MBR) has been proclaimed to be the most reliable treatment technique for NSAIDs removal (complete removal). Chlorination (81−95%) followed by conventional mechanical biological treatment (CMBT) (94−98%) treatment has been demonstrated to be the most efficient in removing NSAIDs. Further, the present review explains that the electrochemical oxidation process is an alternative process for the treatment of NSAIDs using a carbon-based anode. Different carbon-based carbon anodes have been searched for electrochemical removal of selected NSAIDs. However, boron-doped diamond and graphite have presented reliable applications for the complete removal of NSAIDs from wastewater samples or their aqueous solution.

8.
Nanomaterials (Basel) ; 12(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35564254

ABSTRACT

For companies, notably in the realms of energy and power supply, the essential requirement for highly efficient thermal transport solutions has become a serious concern. Current research highlighted the use of metallic oxides and carbon-based nanofluids as heat transfer fluids. This work examined two carbon forms (PEG@GNPs & PEG@TGr) and two types of metallic oxides (Al2O3 & SiO2) in a square heated pipe in the mass fraction of 0.1 wt.%. Laboratory conditions were as follows: 6401 ≤ Re ≤ 11,907 and wall heat flux = 11,205 W/m2. The effective thermal-physical and heat transfer properties were assessed for fully developed turbulent fluid flow at 20-60 °C. The thermal and hydraulic performances of nanofluids were rated in terms of pumping power, performance index (PI), and performance evaluation criteria (PEC). The heat transfer coefficients of the nanofluids improved the most: PEG@GNPs = 44.4%, PEG@TGr = 41.2%, Al2O3 = 22.5%, and SiO2 = 24%. Meanwhile, the highest augmentation in the Nu of the nanofluids was as follows: PEG@GNPs = 35%, PEG@TGr = 30.1%, Al2O3 = 20.6%, and SiO2 = 21.9%. The pressure loss and friction factor increased the highest, by 20.8-23.7% and 3.57-3.85%, respectively. In the end, the general performance of nanofluids has shown that they would be a good alternative to the traditional working fluids in heat transfer requests.

9.
Environ Sci Pollut Res Int ; 29(41): 62447-62457, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35397035

ABSTRACT

Carbamazepine (CBZ) is one of the most widely used antiepileptic drugs in Malaysia. It was detected frequently in wastewater. The electrochemical treatment process has been applied for the degradation of CBZ using graphite-PVC as an anode under these conditions: 0.5 g sodium chloride (NaCl)) as supporting electrolyte, 5 V and 0-60 min electrolysis time in 100 mL of solution. However, 10,11-dihydro10-hydroxy carbamazepine (HDX-CBZ) and 10,11-epoxycarbamazepine (EPX-CBZ) as the main by-product have been analysed and quantified using liquid chromatography-time of flight/mass spectrometry (LC-TOF/MS). Both by-products were analysed in positive ionization mode, and they were separated on a chromatographic C18 column (5 µm, 2 mm × 150 mm) at a flow rate of 0.3 mL/min. Solid-phase extraction (SPE) was applied as a pre-concentration step for the enhancement of the sensitivity and detectability for both HDX-CBZ and EPX-CBZ by-products. Methanol (MeOH) has been selected as the best elution solvent for both by-products compared to methyl tertiary butyl ether (MTBE) and acetone (AC). However, the recovery was 85% and 92% for HDX-CBZ and EPX-CBZ by-products, respectively. The limit of quantification (LOQ) was 0.588 and 0.109 µg/L for HDX-CBZ and EPX-CBZ by-products, respectively. After 20 min of electrolysis time, both by-products HDX-CBZ and EPX-CBZ appeared at maximum concentrations of 343 and 144 µg/L then they were decreased to 17.2 and 9.8 µg/L, respectively, after 40 min. At the end of electrochemical treatment, both by-products were completely eliminated after 60 min.


Subject(s)
Carbamazepine , Wastewater , Anticonvulsants , Carbamazepine/analogs & derivatives , Carbamazepine/analysis , Chromatography, High Pressure Liquid , Chromatography, Liquid , Wastewater/analysis
10.
Environ Sci Pollut Res Int ; 26(10): 10044-10056, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30756352

ABSTRACT

Poor removal of many pharmaceuticals and personal care products in sewage treatment plants leads to their discharge into the receiving waters, where they may cause negative effects for aquatic environment and organisms. In this study, electrochemical removal process has been used as alternative method for removal of mefenamic acid (MEF). For our knowledge, removal of MEF using electrochemical process has not been reported yet. Effects of initial concentration of mefenamic acid, sodium chloride (NaCl), and applied voltage were evaluated for improvement of the efficiency of electrochemical treatment process and to understand how much electric energy was consumed in this process. Removal percentage (R%) was ranged between 44 and 97%, depending on the operating parameters except for 0.1 g NaCl which was 9.1%. Consumption energy was 0.224 Wh/mg after 50 min at 2 mg/L of mefenamic acid, 0.5 g NaCl, and 5 V. High consumption energy (0.433 Wh/mg) was observed using high applied voltage of 7 V. Investigation and elucidation of the transformation products were provided by Bruker software dataAnalysis using liquid chromatography-time of flight mass spectrometry. Seven chlorinated and two non-chlorinated transformation products were investigated after 20 min of electrochemical treatment. However, all transformation products (TPs) were eliminated after 140 min. For the assessment of the toxicity, it was impacted by the formation of transformation products especially between 20 and 60 min then the inhibition percentage of E. coli bacteria was decreased after 80 min to be the lowest value.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Mefenamic Acid/chemistry , Water Pollutants, Chemical/chemistry , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Chromatography, Liquid/methods , Electrochemistry , Escherichia coli/drug effects , Halogenation , Kinetics , Mefenamic Acid/toxicity , Sodium Chloride/chemistry , Tandem Mass Spectrometry , Water Pollutants, Chemical/toxicity , Water Purification
11.
J Environ Sci (China) ; 74: 134-146, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30340667

ABSTRACT

Prazosin (PRZ) and levonorgestrel (LNG) are widely used as an anti-disease drugs due to their biological activity in the human body. The frequent detection of these compounds in water samples requires alternative technologies for the removal of both compounds. After electrochemical degradation of PRZ and LNG, the parent compounds could be completely removed after treatment, but the identification and characterization of by-products are necessary as well. In this study, the effects of NaCl concentration and applied voltage were investigated during the electrochemical degradation process. The results revealed that the increase of NaCl concentration and applied voltage could promote the generation of hypochlorite OCl- and then enhance the degradation of PRZ and LNG. After initial study, 6V and 0.2g NaCl were selected for further experiments (96% and 99% removal of PRZ and LNG after 40min, respectively). Energy consumption was also evaluated and calculated for PRZ and LNG at 3, 6 and 8V. Solid phase extraction (SPE) method plays an important role in enhancing the detection limit of by-products. Furthermore, characterization and identification of chlorinated and non-chlorinated by-products were conducted using an accurate liquid chromatography-time of flight/mass spectrometry LC-TOF/MS instrument. The monitoring of products during the electrochemical degradation process was performed at 6V and 0.2g NaCl in a 50mL solution. The results indicated that two chlorinated products were formed during the electrochemical process. The toxicity of by-products toward E. coli bacteria was investigated at 37°C and 20hr incubation time.


Subject(s)
Levonorgestrel/chemistry , Prazosin/chemistry , Chromatography, Liquid , Electrochemistry , Escherichia coli/drug effects , Levonorgestrel/toxicity , Prazosin/toxicity , Sodium Chloride/chemistry , Tandem Mass Spectrometry
12.
Anal Bioanal Chem ; 410(20): 4829-4846, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29806068

ABSTRACT

The scarcity of data about the occurrence of pharmaceuticals in water bodies in Malaysia prompted us to develop a suitable analytical method to address this issue. We therefore developed a method based on solid-phase extraction combined with liquid chromatography-time of flight/mass spectrometry (SPE-LC-TOF/MS) for the analysis of sixteen prescribed and two nonprescribed pharmaceuticals that are potentially present in water samples. The levels of these pharmaceuticals, which were among the top 50 pharmaceuticals consumed in Malaysia during the period 2011-2014, in influent and effluent of five sewage treatment plants (STPs) in Bangi, Malaysia, were then analyzed using the developed method. All of the pharmaceuticals were separated chromatographically using a 5 µm, 2.1 mm × 250 mm C18 column at a flow rate of 0.3 mL/min. Limits of quantification (LOQs) were 0.3-8.2 ng/L, 6.5-89 ng/L, and 11.1-93.8 ng/L in deionized water (DIW), STP effluent, and STP influent, respectively, for most of the pharmaceuticals. Recoveries were 51-108%, 52-118%, and 80-107% from the STP influent, STP effluent, and DIW, respectively, for most of the pharmaceuticals. The matrix effect was also evaluated. The signals from carbamazepine, diclofenac sodium, and mefenamic acid were found to be completely suppressed in the STP influent. The signals from other compounds were found to be influenced by matrix effects more strongly in STP influent (enhancement or suppression of signal ≤180%) than in effluent (≤94%). The signal from prednisolone was greatly enhanced in the STP influent, indicating a matrix effect of -134%. Twelve pharmaceuticals were frequently detected in all five STPs, and caffeine, prazosin, and theophylline presented the highest concentrations among all the pharmaceuticals monitored: up to 7611, 550, and 319 ng/L in the STP influent, respectively. To the best of our knowledge, this is the first time that prazosin has been detected in a water matrix in Malaysia. Graphical abstract ᅟ.


Subject(s)
Chromatography, Liquid/methods , Pharmaceutical Preparations/analysis , Sewage/analysis , Solid Phase Extraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Water Pollutants, Chemical/analysis , Chromatography, Liquid/instrumentation , Equipment Design , Limit of Detection , Malaysia , Solid Phase Extraction/instrumentation , Spectrometry, Mass, Electrospray Ionization/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...